DynaMo MS-Analytics Facility

At the DynaMo Center four state-of-the-art LC-MS instruments are available: two high performance TripleQuadrupole Mass Spectrometers for targeted analysis of small metabolites and targeted proteomics and two Time-of-Flight Mass Spectrometer for metabolomics approaches. Our analytical facility enables us to analyze samples both with high sensitivity, accuracy and precision with a total sample throughput of ~ approx. 45000 sample injections per year. Thorough service and regular maintenance ensure high quality data. Since the first samples were run in April 2014 more than 65 scientific articles have been published with data that was generated on these instruments.

The instruments are available for researchers at the DynaMo Center, the Department for Plant and Environmental Sciences. University of Copenhagen and for research collaborations with universities, start-ups and companies. Please contact us for further details.

Instrumentation

1. Agilent Ultivo TripleQuadrupole coupled to a 1290 Infinity II series UHPLC

Agilent Ultivo TripleQuadrupole

Our state-of-the-art TripleQuadrupole (QqQ) instrument and work horse (> 30000 sample injections per year) allows for accurate quantification in a very large dynamic range (>6x106) with detection limits for many compounds in the sub-nmolar range. Multiple Reaction Monitoring (MRM) facilitates detection and quantification of a large numbers of different compounds within short LC runs (4-10 min) with high precision and accuracy. The Multisampler for up to 14 96-well or 384-well plates allows for high-throughput. In combination with the Multicolumn compartment long unsupervised runs are even possible with different columns and solvents. This instrument opens for new possibilities in terms of sample throughput with highest accuracy and precision. In addition to small metabolites, we have established Selected Reaction Monitoring (SRM) methods for targeted proteomics in different organisms like E. coli, S. cerevisiae, Arabidopsis thaliana and other species. More than 150000 data files (as of July 2025) have been generated since its installation in August 2019.

 2. Bruker EVOQ-Elite TripleQuadrupole coupled to a Bruker Advance UHPLC

Bruker EVOQ-Elite TripleQuadrupole

Our old TripleQuadrupole (QqQ) work horse that has surpassed 350,000 sample injections (as of July 2025) over the last 11.5 years. An excellent instrument for many types of analysis that allows for accurate quantification in a large dynamic range with detection limits for many compounds in the low nmolar range. Multiple Reaction Monitoring (MRM) facilitates detection and quantification of a large numbers of different compounds within short LC runs (4-10 min) with high precision. We have developed a range of standard methods allowing for quantification of a variety of compounds (see list to the right for details).

Bruker Compact micrOTOF-Q

3. Bruker Compact micrOTOF-Q coupled to a Dionex Ultimate 3000RS UHPLC

Our Time-of-flight (TOF) instrument allows for determination of the accurate mass (< ±2 ppm) and facilitates identification of new compounds. The instrument is used for screening and metabolomics analysis of extracts mainly from plant and microbial sources. The TOF is coupled to a high performance UHPLC providing separation of analytes before they enter the mass spectrometer. The setup runs very robustly also sequences of more than 14 days or longer. More than 53000 data files have been generated since its installation in early 2014 (as of July 2025).

  Bruker timsTOF Pro

  4. Bruker timsTOF Pro coupled to a 1290 Infinity II series UHPLC with DAD
Our timsToF Pro instrument allows for determination of accurate mass (< ±1 ppm) with very high resolution. The increased resolving power and mass accuracy combined with higher sensitivity and speed compared to our “old” Compact Q-TOF. Especially small sample volumes and samples with low metabolite content benefit from the combination of the extremely versatile 1290 II UHPLC and the timsToF combination. The instrument is used for screening and metabolomics analysis of extracts mainly from plant and microbial sources. This setup runs extremely robust also over sequences of more than 14 days or longer with minimal shifts in retention time and signal intensity. A further benefit is the possibility to use the trapped ion mobility (tims) to also separate isomers by their ccs value. More than 7500 data files have been generated since its installation in May 2023 (as of July 2025).

 

 

with data acquired on instruments of the DynaMo MS-Analytics Facility:

2026

Nielsen, M.B.D., Mikkelsen, M.K.D., Rasmussen, H.C., Hvistendahl, M.A., Lützhøft, C.H., Slater, J., Crocoll, C., Poborsky, M., Jørgensen, N.P., Soriano, A., Stilling, M., Bue, M., 2026. Cefepime/enmetazobactam for Gram-negative periprosthetic joint infections? A randomized porcine study on target tissue pharmacokinetics. Journal of Antimicrobial Chemotherapy 81, dkaf487. https://doi.org/10.1093/jac/dkaf487 

Tolio, B., Sherwood, P., Marčiulynienė, D., Crocoll, C., Cleary, M., Liziniewicz, M., 2026. Constitutive Metabolite Profiling of European and Asian Fraxinus with Varying Susceptibility to Ash Dieback. J Chem Ecol 52, 8. https://doi.org/10.1007/s10886-025-01678-z 

2025

Azariadis, A., Miller Johansen, S., Andrzejczak, O.A., Yadav, H., Belew, Z.M., Xia, W., Crocoll, C., Blennow, A., Brinch-Pedersen, H., Petersen, B.L., Nour-Eldin, H.H., Hebelstrup, K.H., 2025. A quest for the potato of the future: characterization of wild tuber-bearing Solanum species for de novo domestication. Journal of Experimental Botany 76, 1011–1031. https://doi.org/10.1093/jxb/erae453 

Hanamghar, S.S., Mellor, S.B., Mikkelsen, L., Crocoll, C., Motawie, M.S., Russo, D.A., Jensen, P.E., Zedler, J.A.Z., 2025. Thylakoid Targeting Improves Stability of a Cytochrome P450 in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth. Biol. 14, 867–877. https://doi.org/10.1021/acssynbio.4c00800 

Low, P.M., Kong, Q., Blaschek, L., Ma, Z., Lim, P.K., Yang, Y., Quek, T., Lim, C.J.R., Singh, S.K., Crocoll, C., Engquist, E., Thorsen, J.S., Pattanaik, S., Tee, W.T., Mutwil, M., Miao, Y., Yuan, L., Xu, D., Persson, S., Ma, W., 2025. ZINC FINGER PROTEIN2 suppresses funiculus lignification to ensure seed loading efficiency in Arabidopsis. Developmental Cell 60, 1719-1729.e6. https://doi.org/10.1016/j.devcel.2025.01.021 

Mikkelsen, M.K.D., Jørgensen, A.R., Kotla, N.G., Stilling, M., Damsgaard, M.B., Crocoll, C., Poborsky, M., Rasmussen, H.C., Henriksen, J.R., Hansen, A.E., Bue, M., 2025. CarboCell G/C offers high and prolonged concentrations of gentamicin and clindamycin in bone tissue following intraosseous injection. J. Bone Joint Infect. 10, 327–334. https://doi.org/10.5194/jbji-10-327-2025 

Shen, D., Micic, N., Venado, R.E., Bjarnholt, N., Crocoll, C., Persson, D.P., Samwald, S., Kopriva, S., Westhoff, P., Metzger, S., Neumann, U., Nakano, R.T., Marín Arancibia, M., Andersen, T.G., 2025. Apoplastic barriers are essential for nodule formation and nitrogen fixation in Lotus japonicus. Science 387, 1281–1286. https://doi.org/10.1126/science.ado8680 

Theodorou, C., de-Prado-Parralejo, V., Xu, D., Todoroki, Y., Svenningsen, L., Mori, T., Crocoll, C., Hirai, M.Y., Tsugawa, H., Nour- Eldin, H.H., Halkier, B.A., 2025. Development of plant extracts as substrates for untargeted transporter substrate identification in Xenopus oocytes. Front. Plant Sci. 16, 1640426. https://doi.org/10.3389/fpls.2025.1640426 

2024

Belew, Z.M., Kanstrup, C., Hua, C., Crocoll, C., Nour-Eldin, H.H., 2024. Inverse pH Gradient-Assay for Facile Characterization of Proton-Antiporters in Xenopus Oocytes. Membranes 14, 39. https://doi.org/10.3390/membranes14020039 

Sanden, N.C.H., Kanstrup, C., Crocoll, C., Schulz, A., Nour-Eldin, H.H., Halkier, B.A., Xu, D., 2024. An UMAMIT-GTR transporter cascade controls glucosinolate seed loading in Arabidopsis. Nat. Plants 10, 172–179. https://doi.org/10.1038/s41477-023-01598-4 

Trinh, M.D.L., Visintainer, D., Günther, J., Østerberg, J.T., Da Fonseca, R.R., Fondevilla, S., Moog, M.W., Luo, G., Nørrevang, A.F., Crocoll, C., Nielsen, P.V., Jacobsen, S., Wendt, T., Bak, S., López‐Marqués, R.L., Palmgren, M., 2024. Site‐directed genotype screening for elimination of antinutritional saponins in quinoa seeds identifies TSARL1 as a master controller of saponin biosynthesis selectively in seeds. Plant Biotechnology Journal 22, 2216–2234. https://doi.org/10.1111/pbi.14340 

2023

Binenbaum, J., Wulff, N., Camut, L., Kiradjiev, K., Anfang, M., Tal, I., Vasuki, H., Zhang, Y., Sakvarelidze-Achard, L., Davière, J.-M., Ripper, D., Carrera, E., Manasherova, E., Ben Yaakov, S., Lazary, S., Hua, C., Novak, V., Crocoll, C., Weinstain, R., Cohen, H., Ragni, L., Aharoni, A., Band, L.R., Achard, P., Nour-Eldin, H.H., Shani, E., 2023. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. Nat. Plants 9, 785–802. https://doi.org/10.1038/s41477-023-01391-3 

Cárdenas, P.D., Landtved, J.P., Larsen, S.H., Lindegaard, N., Wøhlk, S., Jensen, K.R., Pattison, D.I., Burow, M., Bak, S., Crocoll, C., Agerbirk, N., 2023. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover. Phytochemistry 213, 113742. https://doi.org/10.1016/j.phytochem.2023.113742 

Hu, Y., Patra, P., Pisanty, O., Shafir, A., Belew, Z.M., Binenbaum, J., Ben Yaakov, S., Shi, B., Charrier, L., Hyams, G., Zhang, Y., Trabulsky, M., Caldararu, O., Weiss, D., Crocoll, C., Avni, A., Vernoux, T., Geisler, M., Nour-Eldin, H.H., Mayrose, I., Shani, E., 2023. Multi-Knock—a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. Nat. Plants 9, 572–587. https://doi.org/10.1038/s41477-023-01374-4 

Kanstrup, C., Jimidar, C.C., Tomas, J., Cutolo, G., Crocoll, C., Schuler, M., Klahn, P., Tatibouët, A., Nour-Eldin, H.H., 2023. Artificial Fluorescent Glucosinolates (F-GSLs) Are Transported by the Glucosinolate Transporters GTR1/2/3. IJMS 24, 920. https://doi.org/10.3390/ijms24020920 

Liu, H., Micic, N., Miller, S., Crocoll, C., Bjarnholt, N., 2023. Species-specific dynamics of specialized metabolism in germinating sorghum grain revealed by temporal and tissue-resolved transcriptomics and metabolomics. Plant Physiology and Biochemistry 196, 807–820. https://doi.org/10.1016/j.plaphy.2023.02.031 

Mellor, S.B., Behrendorff, J.B.Y.H., Ipsen, J.Ø., Crocoll, C., Laursen, T., Gillam, E.M.J., Pribil, M., 2023. Exploiting photosynthesis-driven P450 activity to produce indican in tobacco chloroplasts. Front. Plant Sci. 13, 1049177. https://doi.org/10.3389/fpls.2022.1049177 

Meyer, L., Crocoll, C., Halkier, B.A., Mirza, O.A., Xu, D., 2023. Identification of key amino acid residues in AtUMAMIT29 for transport of glucosinolates. Front. Plant Sci. 14, 1219783. https://doi.org/10.3389/fpls.2023.1219783 

Moog, M.W., Yang, X., Bendtsen, A.K., Dong, L., Crocoll, C., Imamura, T., Mori, M., Cushman, J.C., Kant, M.R., Palmgren, M., 2023. Epidermal bladder cells as a herbivore defense mechanism. Current Biology 33, 4662-4673.e6. https://doi.org/10.1016/j.cub.2023.09.063 

Poborsky, M., Crocoll, C., Motawie, M.S., Halkier, B.A., 2023. Systematic engineering pinpoints a versatile strategy for the expression of functional cytochrome P450 enzymes in Escherichia coli cell factories. Microb Cell Fact 22, 219. https://doi.org/10.1186/s12934-023-02219-7 

Radchuk, V., Belew, Z.M., Gündel, A., Mayer, S., Hilo, A., Hensel, G., Sharma, R., Neumann, K., Ortleb, S., Wagner, S., Muszynska, A., Crocoll, C., Xu, D., Hoffie, I., Kumlehn, J., Fuchs, J., Peleke, F.F., Szymanski, J.J., Rolletschek, H., Nour-Eldin, H.H., Borisjuk, L., 2023. SWEET11b transports both sugar and cytokinin in developing barley grains. The Plant Cell 35, 2186–2207. https://doi.org/10.1093/plcell/koad055 

Xu, D., Sanden, N.C.H., Hansen, L.L., Belew, Z.M., Madsen, S.R., Meyer, L., Jørgensen, M.E., Hunziker, P., Veres, D., Crocoll, C., Schulz, A., Nour-Eldin, H.H., Halkier, B.A., 2023. Export of defensive glucosinolates is key for their accumulation in seeds. Nature 617, 132–138. https://doi.org/10.1038/s41586-023-05969-x 

2022

Cowan, M., Møller, B.L., Norton, S., Knudsen, C., Crocoll, C., Furtado, A., Henry, R., Blomstedt, C., Gleadow, R.M., 2022. Cyanogenesis in the Sorghum Genus: From Genotype to Phenotype. Genes 13, 140. https://doi.org/10.3390/genes13010140 

Del Giudice, R., Putkaradze, N., Dos Santos, B.M., Hansen, C.C., Crocoll, C., Motawia, M.S., Fredslund, F., Laursen, T., Welner, D.H., 2022. Structure‐guided engineering of key amino acids in UGT85B1 controlling substrate and stereo‐specificity in aromatic cyanogenic glucoside biosynthesis. The Plant Journal 111, 1539–1549. https://doi.org/10.1111/tpj.15904 

Hansted, L., Crocoll, C., Bitarafan, Z., Andreasen, C., 2022. Clopyralid applied to winter oilseed rape (Brassica napus L.) contaminates the food products nectar, honey and pollen. Food Control 140, 109124. https://doi.org/10.1016/j.foodcont.2022.109124 

Peña-Varas, C., Kanstrup, C., Vergara-Jaque, A., González-Avendaño, M., Crocoll, C., Mirza, O., Dreyer, I., Nour-Eldin, H., Ramírez, D., 2022. Structural Insights into the Substrate Transport Mechanisms in GTR Transporters through Ensemble Docking. IJMS 23, 1595. https://doi.org/10.3390/ijms23031595 

Perby, L.K., Richter, S., Weber, K., Hieber, A.J., Hess, N., Crocoll, C., Mogensen, H.K., Pribil, M., Burow, M., Nielsen, T.H., Mustroph, A., 2022. Cytosolic phosphofructokinases are important for sugar homeostasis in leaves of Arabidopsis thaliana. Annals of Botany 129, 37–52. https://doi.org/10.1093/aob/mcab122 

Wang, C., Poborsky, M., Crocoll, C., Nødvig, C.S., Mortensen, U.H., Halkier, B.A., 2022. Comparison of Genome and Plasmid-Based Engineering of Multigene Benzylglucosinolate Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 88, e00978-22. https://doi.org/10.1128/aem.00978-22 

2021

Hunziker, P., Lambertz, S.K., Weber, K., Crocoll, C., Halkier, B.A., Schulz, A., 2021. Herbivore feeding preference corroborates optimal defense theory for specialized metabolites within plants. Proc. Natl. Acad. Sci. U.S.A. 118, e2111977118. https://doi.org/10.1073/pnas.2111977118 

Kazachkova, Y., Zemach, I., Panda, S., Bocobza, S., Vainer, A., Rogachev, I., Dong, Y., Ben-Dor, S., Veres, D., Kanstrup, C., Lambertz, S.K., Crocoll, C., Hu, Y., Shani, E., Michaeli, S., Nour-Eldin, H.H., Zamir, D., Aharoni, A., 2021. The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. Nat. Plants 7, 468–480. https://doi.org/10.1038/s41477-021-00865-6 

Wang, C., Crocoll, C., Agerbirk, N., Halkier, B.A., 2021. Engineering and optimization of the 2‐phenylethylglucosinolate production in Nicotiana benthamiana by combining biosynthetic genes from Barbarea vulgaris and Arabidopsis thaliana. The Plant Journal 106, 978–992. https://doi.org/10.1111/tpj.15212 

Yang, Z.-L., Nour-Eldin, H.H., Hänniger, S., Reichelt, M., Crocoll, C., Seitz, F., Vogel, H., Beran, F., 2021. Sugar transporters enable a leaf beetle to accumulate plant defense compounds. Nat Commun 12, 2658. https://doi.org/10.1038/s41467-021-22982-8 

2020

Aghajanzadeh, T.A., Prajapati, D.H., Burow, M., 2020. Copper toxicity affects indolic glucosinolates and gene expression of key enzymes for their biosynthesis in Chinese cabbage. Archives of Agronomy and Soil Science 66, 1288–1301. https://doi.org/10.1080/03650340.2019.1666208 

Brey, L.F., Włodarczyk, A.J., Bang Thøfner, J.F., Burow, M., Crocoll, C., Nielsen, I., Zygadlo Nielsen, A.J., Jensen, P.E., 2020. Metabolic engineering of Synechocystis sp. PCC 6803 for the production of aromatic amino acids and derived phenylpropanoids. Metabolic Engineering 57, 129–139. https://doi.org/10.1016/j.ymben.2019.11.002 

Hunziker, P., Ghareeb, H., Wagenknecht, L., Crocoll, C., Halkier, B.A., Lipka, V., Schulz, A., 2020. De novo indol‐3‐ylmethyl glucosinolate biosynthesis, and not long‐distance transport, contributes to defence of Arabidopsis against powdery mildew. Plant Cell & Environment 43, 1571–1583. https://doi.org/10.1111/pce.13766 

Katz, E., Bagchi, R., Jeschke, V., Rasmussen, A.R.M., Hopper, A., Burow, M., Estelle, M., Kliebenstein, D.J., 2020. Diverse Allyl Glucosinolate Catabolites Independently Influence Root Growth and Development. Plant Physiol. 183, 1376–1390. https://doi.org/10.1104/pp.20.00170 

Manzotti, A., Bergna, A., Burow, M., Jørgensen, H.J.L., Cernava, T., Berg, G., Collinge, D.B., Jensen, B., 2020. Insights into the community structure and lifestyle of the fungal root endophytes of tomato by combining amplicon sequencing and isolation approaches with phytohormone profiling. FEMS Microbiology Ecology 96, fiaa052. https://doi.org/10.1093/femsec/fiaa052 

Montini, L., Crocoll, C., Gleadow, R.M., Motawia, M.S., Janfelt, C., Bjarnholt, N., 2020. Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging of Metabolites during Sorghum Germination. Plant Physiol. 183, 925–942. https://doi.org/10.1104/pp.19.01357 

Thiesen, L., Belew, Z.M., Griem-Krey, N., Pedersen, S.F., Crocoll, C., Nour-Eldin, H.H., Wellendorph, P., 2020. The γ-hydroxybutyric acid (GHB) analogue NCS-382 is a substrate for both monocarboxylate transporters subtypes 1 and 4. European Journal of Pharmaceutical Sciences 143, 105203. https://doi.org/10.1016/j.ejps.2019.105203 

Wang, C., Dissing, M.M., Agerbirk, N., Crocoll, C., Halkier, B.A., 2020. Characterization of Arabidopsis CYP79C1 and CYP79C2 by Glucosinolate Pathway Engineering in Nicotiana benthamiana Shows Substrate Specificity Toward a Range of Aliphatic and Aromatic Amino Acids. Front. Plant Sci. 11, 57. https://doi.org/10.3389/fpls.2020.00057 

2019

Aghajanzadeh, T.A., Reich, M., Hawkesford, M.J., Burow, M., 2019. Sulfur metabolism in Allium cepa is hardly affected by chloride and sulfate salinity. Archives of Agronomy and Soil Science 65, 945–956. https://doi.org/10.1080/03650340.2018.1540037 

Ehlert, M., Jagd, L.M., Braumann, I., Dockter, C., Crocoll, C., Motawia, M.S., Møller, B.L., Lyngkjær, M.F., 2019. Deletion of biosynthetic genes, specific SNP patterns and differences in transcript accumulation cause variation in hydroxynitrile glucoside content in barley cultivars. Sci Rep 9, 5730. https://doi.org/10.1038/s41598-019-41884-w 

Martens, H.J., Sørensen, S., Burow, M., Veierskov, B., 2019. Characterization of Top Leader Elongation in Nordmann Fir (Abies nordmanniana). J Plant Growth Regul 38, 1354–1361. https://doi.org/10.1007/s00344-019-09938-5 

Mellor, S.B., Vinde, M.H., Nielsen, A.Z., Hanke, G.T., Abdiaziz, K., Roessler, M.M., Burow, M., Motawia, M.S., Møller, B.L., Jensen, P.E., 2019. Defining optimal electron transfer partners for light-driven cytochrome P450 reactions. Metabolic Engineering 55, 33–43. https://doi.org/10.1016/j.ymben.2019.05.003 

Petersen, A., Crocoll, C., Halkier, B.A., 2019a. De novo production of benzyl glucosinolate in Escherichia coli. Metabolic Engineering 54, 24–34. https://doi.org/10.1016/j.ymben.2019.02.004 

Petersen, A., Hansen, L.G., Mirza, N., Crocoll, C., Mirza, O., Halkier, B.A., 2019b. Changing substrate specificity and iteration of amino acid chain elongation in glucosinolate biosynthesis through targeted mutagenesis of Arabidopsis methylthioalkylmalate synthase 1. Bioscience Reports 39, BSR20190446. https://doi.org/10.1042/BSR20190446 

Rakpenthai, A., Khaksar, G., Burow, M., Olsen, C.E., Sirikantaramas, S., 2019. Metabolic Changes and Increased Levels of Bioactive Compounds in White Radish (Raphanus sativus L. cv. 01) Sprouts Elicited by Oligochitosan. Agronomy 9, 467. https://doi.org/10.3390/agronomy9080467 

Santamaría, M.E., Martínez, M., Arnaiz, A., Rioja, C., Burow, M., Grbic, V., Díaz, I., 2019. An Arabidopsis TIR-Lectin Two-Domain Protein Confers Defense Properties against Tetranychus urticae. Plant Physiol. 179, 1298–1314. https://doi.org/10.1104/pp.18.00951 

Wulff, N., Ernst, H.A., Jørgensen, M.E., Lambertz, S., Maierhofer, T., Belew, Z.M., Crocoll, C., Motawia, M.S., Geiger, D., Jørgensen, F.S., Mirza, O., Nour-Eldin, H.H., 2019. An Optimized Screen Reduces the Number of GA Transporters and provides Insights into NPF Substrate Determinants. https://doi.org/10.1101/670174 

Xu, D., Hunziker, P., Koroleva, O., Blennow, A., Crocoll, C., Schulz, A., Nour-Eldin, H.H., Halkier, B.A., 2019. GTR-Mediated Radial Import Directs Accumulation of Defensive Glucosinolates to Sulfur-Rich Cells in the Phloem Cap of Arabidopsis Inflorescence Stem. Molecular Plant 12, 1474–1484. https://doi.org/10.1016/j.molp.2019.06.008 

2018

Bjarnholt, N., Neilson, E.H.J., Crocoll, C., Jørgensen, K., Motawia, M.S., Olsen, C.E., Dixon, D.P., Edwards, R., Møller, B.L., 2018. Glutathione transferases catalyze recycling of auto‐toxic cyanogenic glucosides in sorghum. The Plant Journal 94, 1109–1125. https://doi.org/10.1111/tpj.13923 

Heskes, A.M., Sundram, T.C.M., Boughton, B.A., Jensen, N.B., Hansen, N.L., Crocoll, C., Cozzi, F., Rasmussen, S., Hamberger, Britta, Hamberger, Björn, Staerk, D., Møller, B.L., Pateraki, I., 2018. Biosynthesis of bioactive diterpenoids in the medicinal plant Vitex agnus‐castus. The Plant Journal 93, 943–958. https://doi.org/10.1111/tpj.13822 

Jæger, D., Simpson, B.S., Ndi, C.P., Jäger, A.K., Crocoll, C., Møller, B.L., Weinstein, P., Semple, S.J., 2018a. Biological activity and LC-MS/MS profiling of extracts from the Australian medicinal plant Acacia ligulata (Fabaceae). Natural Product Research 32, 576–581. https://doi.org/10.1080/14786419.2017.1318383 

Jæger, D., Simpson, B.S., Ndi, C.P., Jäger, A.K., Crocoll, C., Møller, B.L., Weinstein, P., Semple, S.J., 2018b. Biological activity and LC-MS/MS profiling of extracts from the Australian medicinal plant Acacia ligulata (Fabaceae). Natural Product Research 32, 576–581. https://doi.org/10.1080/14786419.2017.1318383 

Nintemann, S.J., Hunziker, P., Andersen, T.G., Schulz, A., Burow, M., Halkier, B.A., 2018. Localization of the glucosinolate biosynthetic enzymes reveals distinct spatial patterns for the biosynthesis of indole and aliphatic glucosinolates. Physiologia Plantarum 163, 138–154. https://doi.org/10.1111/ppl.12672 

2017

Barba-Espín, G., Glied, S., Crocoll, C., Dzhanfezova, T., Joernsgaard, B., Okkels, F., Lütken, H., Müller, R., 2017. Foliar-applied ethephon enhances the content of anthocyanin of black carrot roots (Daucus carota ssp. sativus var. atrorubens Alef.). BMC Plant Biol 17, 70. https://doi.org/10.1186/s12870-017-1021-7 

Henriques De Jesus, M.P.R., Zygadlo Nielsen, A., Busck Mellor, S., Matthes, A., Burow, M., Robinson, C., Erik Jensen, P., 2017. Tat proteins as novel thylakoid membrane anchors organize a biosynthetic pathway in chloroplasts and increase product yield 5-fold. Metabolic Engineering 44, 108–116. https://doi.org/10.1016/j.ymben.2017.09.014 

Ionescu, I.A., López-Ortega, G., Burow, M., Bayo-Canha, A., Junge, A., Gericke, O., Møller, B.L., Sánchez-Pérez, R., 2017. Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in Sweet Cherry. Front. Plant Sci. 8, 1233. https://doi.org/10.3389/fpls.2017.01233 

Jørgensen, M., Crocoll, C., Halkier, B., Nour-Eldin, H., 2017. Uptake Assays in Xenopus laevis Oocytes Using Liquid Chromatography-mass Spectrometry to Detect Transport Activity. BIO-PROTOCOL 7. https://doi.org/10.21769/BioProtoc.2581 

Jørgensen, M.E., Xu, D., Crocoll, C., Ernst, H.A., Ramírez, D., Motawia, M.S., Olsen, C.E., Mirza, O., Nour-Eldin, H.H., Halkier, B.A., 2017. Origin and evolution of transporter substrate specificity within the NPF family. eLife 6, e19466. https://doi.org/10.7554/eLife.19466 

Malinovsky, F.G., Thomsen, M.-L.F., Nintemann, S.J., Jagd, L.M., Bourgine, B., Burow, M., Kliebenstein, D.J., 2017. An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. eLife 6, e29353. https://doi.org/10.7554/eLife.29353 

Nintemann, S.J., Vik, D., Svozil, J., Bak, M., Baerenfaller, K., Burow, M., Halkier, B.A., 2017. Unravelling Protein-Protein Interaction Networks Linked to Aliphatic and Indole Glucosinolate Biosynthetic Pathways in Arabidopsis. Front. Plant Sci. 8, 2028. https://doi.org/10.3389/fpls.2017.02028 

Payne, R.M.E., Xu, D., Foureau, E., Teto Carqueijeiro, M.I.S., Oudin, A., Bernonville, T.D.D., Novak, V., Burow, M., Olsen, C.-E., Jones, D.M., Tatsis, E.C., Pendle, A., Ann Halkier, B., Geu-Flores, F., Courdavault, V., Nour-Eldin, H.H., O’Connor, S.E., 2017. An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nature Plants 3, 16208. https://doi.org/10.1038/nplants.2016.208 

Vavitsas, K., Rue, E.Ø., Stefánsdóttir, L.K., Gnanasekaran, T., Blennow, A., Crocoll, C., Gudmundsson, S., Jensen, P.E., 2017. Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways. Microb Cell Fact 16, 140. https://doi.org/10.1186/s12934-017-0757-y 

2016

Crocoll, C., Halkier, B.A., Burow, M., 2016a. Analysis and Quantification of Glucosinolates. CP Plant Biology 1, 385–409. https://doi.org/10.1002/cppb.20027 

Francisco, M., Joseph, B., Caligagan, H., Li, B., Corwin, J.A., Lin, C., Kerwin, R., Burow, M., Kliebenstein, D.J., 2016. The Defense Metabolite, Allyl Glucosinolate, Modulates Arabidopsis thaliana Biomass Dependent upon the Endogenous Glucosinolate Pathway. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.00774 

Mellor, S.B., Nielsen, A.Z., Burow, M., Motawia, M.S., Jakubauskas, D., Møller, B.L., Jensen, P.E., 2016. Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis. ACS Chem. Biol. 11, 1862–1869. https://doi.org/10.1021/acschembio.6b00190 

Mirza, N., Crocoll, C., Erik Olsen, C., Ann Halkier, B., 2016. Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli. Metabolic Engineering 35, 31–37. https://doi.org/10.1016/j.ymben.2015.09.012 

Tal, I., Zhang, Y., Jørgensen, M.E., Pisanty, O., Barbosa, I.C.R., Zourelidou, M., Regnault, T., Crocoll, C., Erik Olsen, C., Weinstain, R., Schwechheimer, C., Halkier, B.A., Nour-Eldin, H.H., Estelle, M., Shani, E., 2016. The Arabidopsis NPF3 protein is a GA transporter. Nat Commun 7, 11486. https://doi.org/10.1038/ncomms11486 

Vik, D., Crocoll, C., Andersen, T.G., Burow, M., Halkier, B.A., 2016. CB5C affects the glucosinolate profile in Arabidopsis thaliana. Plant Signaling & Behavior 11, e1160189. https://doi.org/10.1080/15592324.2016.1160189 

Wlodarczyk, A., Gnanasekaran, T., Nielsen, A.Z., Zulu, N.N., Mellor, S.B., Luckner, M., Thøfner, J.F.B., Olsen, C.E., Mottawie, M.S., Burow, M., Pribil, M., Feussner, I., Møller, B.L., Jensen, P.E., 2016. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803. Metabolic Engineering 33, 1–11. https://doi.org/10.1016/j.ymben.2015.10.009 

2015

Jensen, L.M., Jepsen, H.S.K., Halkier, B.A., Kliebenstein, D.J., Burow, M., 2015a. Natural variation in cross-talk between glucosinolates and onset of flowering in Arabidopsis. Front. Plant Sci. 6. https://doi.org/10.3389/fpls.2015.00697 

Jensen, L.M., Kliebenstein, D.J., Burow, M., 2015b. Investigation of the multifunctional gene AOP3 expands the regulatory network fine-tuning glucosinolate production in Arabidopsis. Front. Plant Sci. 6. https://doi.org/10.3389/fpls.2015.00762